Announcements


There are no announcements

Forum

General


This course is part of the MAGIC core.

Description

Algebraic topology studies `geometric' shapes, spaces and maps between them by algebraic means. An example of a space is a circle, or a doughnut-shaped figure, or a Möbius band. A little more precisely, the objects we want to study belong to a certain geometric `category' of topological spaces (the appropriate definition will be given in due course). This category is hard to study directly in all but the simplest cases. The objects involved could be multidimensional, or even have infinitely many dimensions and our everyday life intuition is of little help. To make any progress we consider a certain `algebraic' category and a `functor' or a `transformation' from the geometric category to the algebraic one. We say `algebraic category' because its objects have algebraic nature, like natural numbers, vector spaces, groups etc. This algebraic category is more under our control. The idea is to obtain information about geometric objects by studying their image under this functor. Now the basic problem of algebraic topology is to find a system of algebraic invariants of topological spaces which would be powerful enough to distinguish different shapes. On the other hand these invariants should be computable. Over the decades people have come up with lots of invariants of this sort. In this course we will consider the most basic, but in some sense, also the most important ones, the so-called homotopy and homology groups.

Semester

Spring 2018 (Monday, January 22 to Friday, March 16; Monday, April 23 to Friday, May 4)

Timetable

  • Tue 09:05 - 09:55
  • Thu 09:05 - 09:55

Prerequisites

Algebra: Groups, rings, fields, homomorphisms, examples
Standard point-set topology: topological spaces, continuous maps, subspaces, product spaces, quotient spaces, examples

Syllabus

Content:
Homotopy: fundamental group and covering spaces, sketch of higher homotopy groups.
Singular homology: construction, homotopy invariance, relationship with fundamental group.
Basic properties of cohomology (not excision or Mayer-Vietoris yet), motivated by singular cohomology.
Relative (co)homology.
Connecting homomorphisms and exact sequences.
Excision.
The Mayer-Vietoris sequence.
Betti numbers and the Euler characteristic.
Options for additional content:
Thom spaces and the Thom isomorphism theorem, Cohomology of projective spaces and projective bundles, Chern classes.

Lecturer


Frank Neumann
Email fn8@le.ac.uk
Phone 01162522722
Photo of Frank Neumann
Profile: My major research areas are algebraic topology and algebraic geometry. I am very much interested in interactions between these subjects and in particular in applications of homotopy theory to algebraic geometry. My recent interests are especially in homotopy and cohomology of moduli stacks. This research has also direct links with arithmetic geometry.


Students


There are currently no students registered for this course.

Bibliography


Algebraic topology from a homotopical viewpointAguilar, Gitler and Prieto
Algebraic topologytom Dieck
Algebraic topology: a first courseFulton
Algebraic Topology BookHatcher
A concise course in algebraic topologyMay
A basic course in algebraic topologyMassey
Topology And GroupoidsBrown
Basic TopologyArmstrong
Elements of TopologyT. B. Singh
Homotopical TopologyFomenko, Fuchs


Note:

Clicking on the link for a book will take you to the relevant Google Book Search page. You may be able to preview the book there. On the right hand side you will see links to places where you can buy the book. There is also link marked 'Find this book in a library'. This sometimes works well, but not always. (You will need to enter your location, but it will be saved after you do that for the first time.)

Assessment



No assessment information is available yet.

No assignments have been set for this course.

Files



No files have yet been uploaded for this course.

Recorded Lectures


Please log in to view lecture recordings.