MAGIC062: Introductory Functional Analysis

Course details

A core MAGIC course

Semester

Spring 2014
Monday, January 20th to Friday, March 28th

Hours

Live lecture hours
20
Recorded lecture hours
0
Total advised study hours
0

Timetable

Thursdays
12:05 - 12:55
Fridays
11:05 - 11:55

Description

This module covers those topics that I think are most basic to modern real analysis at this level, and within the constraints imposed by a 20 hour course.
It starts with a quick run through basics: topology in metric spaces, elementary general topology, linear algebra emphasising the geometric aspects, integration on measure spaces. It covers basic theory of Banach spaces - complete normed linear spaces - and linear operators on them. An important example is the class of Hilbert spaces - Banach spaces with an inner product - which includes the L2 spaces, of functions square-integrable with respect to a measure.
The latter part of the course is angled to a fundamental theorem on Fourier Series (FS) of periodic functions on the real line R, dating from the late 19th century. Namely, the FS of every L2 periodic function f converges to f in the L2 sense (whereas the corresponding result for L1 functions, and for continuous functions, is false).
Finally, the tools developed are deployed to prove another big 19th century result, the Riemann-Lebesgue Lemma: the Fourier transform of an L1 function on R is continuous and converges to 0 at infinity.
The material is all in my 1973 book "Basic Methods of Linear Functional Analysis" (see Bibliography). It was reprinted by Dover Press in December 2011 (with many corrections-the new edition is a better product). Amazon price in Jan 2014 is £14.67 including free delivery in the UK, but other sellers can get it to you for under £9. Barnes and Noble also have it cheap, if you happen to be visiting the USA.

Prerequisites

Standard undergraduate real analysis.

Syllabus

This summarises what I taught in 2012-13. It covers most of the syllabus I was originally given. Stuff in [square brackets] is not explicitly in that syllabus.
This time I aim to cover basic theory of the adjoint of an operator on a normed space, hence maybe omit some material at the end.
-----
Basic metric spaces. [Topologies]. Separability. [Compactness]. [Metric space properties equivalent to compactness, e.g. Weierstrass convergent subsequence condition].
Basic measure theory, the integral, and basic theorems such as Dominated Convergence. The Lp spaces on an arbitrary measure space. Existence and regularity of Lebesgue measure assumed without proof.
Basic linear spaces, [linearly independent and spanning sets, product and quotient of linear spaces]. [Linear maps, image, kernel.] [Algebraic operations on subsets of linear space; geometric viewpoint; algebra of convex subsets.]
Normed linear spaces. Definitions and examples.
Basic normed space topology and geometry. [Compactness, convexity in normed spaces].
Completeness and how to establish it. Characterisation by infinite series.
Proof that L1 is complete. (Outline proof) general Lp is complete. Lp with Lebesgue measure, on a real interval, is separable for 1 < = p < ∞.
[Subspace, product, quotient of normed spaces].
Linear maps and functionals on normed spaces. [Operator norm. Space Bdd(X,Y) of bounded operators. Bdd(X,Y) is a Banach space if Y is.]
The dual space of a normed space. [Hahn-Banach Theorem mentioned; proved later].
Inner product spaces. Hilbert spaces. Examples, including L2 spaces.
Schwarz inequality, generalised Pythagoras, [polarisation identities].
Orthogonality, [orthogonal complement, projection].
Riesz-Fréchet Theorem on bounded linear functionals on a Hilbert space.
Orthonormal sets and expansions. Bessel's inequality, Parseval's equation. Characterisations of complete ONS. [Characterisations of separable Hilbert spaces].
[Overview of Zorn's Lemma].
[The Fourier series convergence problem].
[Density theorems. Fundamental sets in a normed space.]
[Weierstrass trigonometric polynomial approximation theorem (Fejér's proof)].
[Hence the functions eint are a complete orthogonal set in L2[−pi,pi]].
[Bounded operator sequence theorem. Application to Riemann-Lebesgue Lemma and related topics.]
[Proof of Hahn-Banach Theorem.]
A few items in the syllabus I was given are only implicitly present in the above: e.g. Lusin's Theorem, which is closely related to the regularity of Lebesgue measure.

Lecturer

  • JP

    Prof John Pryce

    University
    Cardiff University

Bibliography

Follow the link for a book to take you to the relevant Google Book Search page

You may be able to preview the book there and see links to places where you can buy the book. There is also link marked 'Find this book in a library' - this sometimes works well, but not always - you will need to enter your location, but it will be saved after you do that for the first time.

Assessment

Description

I will put out a Problem Sheet around week 4 and another around week 8, as formative assessment. I probably can't give individual feedback to everyone about their solution of these problems, but I aim to answer everyone who gets stuck and needs help.
There will be a three hour exam during the examination period, as specified in the MAGIC assessment rules. I will give individual comments on your papers, and post my own sample solutions with general comments on performance.

Assessment not available

Assessments are only visible to those being assessed for the course.

Files

Only consortium members have access to these files.

Please log in to view course materials.

Lectures

Please log in to view lecture recordings.