MAGIC076: The Heisenberg group in mathematics and physics

Course details

Semester

Autumn 2013
Monday, October 7th to Saturday, December 14th

Hours

Live lecture hours
10
Recorded lecture hours
0
Total advised study hours
0

Timetable

Fridays
09:05 - 09:55

Description

The relations, which define the Heisenberg group or its Lie algebra, are of a fundamental nature and appeared in very different areas. For example, the basic operators of differentiation and multiplication by an independent variable in analysis satisfy to the same commutation relations as observables of momentum and coordinate in quantum mechanics.
It is very easy to oversee those common structures. In his paper "On the role of the Heisenberg group in harmonic analysis", Roger Howe said: "An investigator might be able to get what he wanted out of a situation while overlooking the extra structure imposed by the Heisenberg group, structure which might enable him to get much more."
In this course we will touch many (but not all!) occurrences of the Heisenberg group, mainly from analysis and quantum mechanics. We will see how to derive important results from the general properties the Heisenberg group and its representations. We will discuss also some cross-fertilisation of different fields through their common ingredient-the Heisenberg group.
The lectures will be given in a survey mode with many technicalities to be omitted.

Prerequisites

The prerequisites include elementary group theory, linear algebra, analysis and introductory Hilbert spaces. Some knowledge of Lie groups and quantum mechanics would be an advantage, however, this is not a strict requirement.

Syllabus

* Origins of the Heisenberg group and its Lie algebra in analysis and physics; Heisenberg commutation relations; structure of the Heisenberg groups, its automorphisms.
* Unitary representations of the Heisenberg group; orbit methods of Kirillov.
* Stone-von Neumann theorem; Schroedinger and Fock-Segal-Bargmann representations: their equivalence and intertwining operator (Bargmann integral transform).
* Fourier inversion theorem, Schwartz space and Plancherel theorem.
* Time-frequencies analysis and wavelets.
* Calculus of pseudo-differential operators and quantisation; analysis in the phase space and the Moyal bracket.

Lecturer

  • VK

    Dr Vladimir V. Kisil

    University
    University of Leeds

Bibliography

Follow the link for a book to take you to the relevant Google Book Search page

You may be able to preview the book there and see links to places where you can buy the book. There is also link marked 'Find this book in a library' - this sometimes works well, but not always - you will need to enter your location, but it will be saved after you do that for the first time.

Assessment

Description

The assessment for this course will be via a single take-home paper in January and with 2 weeks to complete and submit online. There will be five questions and any three of them can be attempted. You will need to achieve about 60

Assessment not available

Assessments are only visible to those being assessed for the course.

Files

Only consortium members have access to these files.

Please log in to view course materials.

Lectures

Please log in to view lecture recordings.