Four of the scheduled lectures will have to be re-arranged. The lecture scheduled for Friday 21st will be at 1pm on Friday 28th instead. Those scheduled for the 2nd, 9th and 16th December will also be rearranged (probably for 1-2pm on Fridays 4, 11, 18 November).

The material for the 10 lectures is now on the web, as is example sheet 1 (due 14 November).



This course is part of the MAGIC core.


Many problems in Applied Mathematics are nonlinear and described by nonlinear ordinary (or partial) differential equations. This course aims to introduce students to the tools and techniques needed to understand the dynamics that might be found in such systems. The emphasis will be on concepts and examples rather than theorems and proofs, and will include a brief survey of useful numerical methods and packages. Students will be invited to submit examples of their own for possible discussion.


Autumn 2011 (Monday, October 10 to Friday, December 16)


  • Fri 09:05 - 09:55


No prerequisites information is available yet.


Outline syllabus
* Definition of a flow (ordinary differential equation), invariant sets, limit sets
* The Poincaré Map
* Equilibria, linearisation, stability of equilibria, periodic orbits and other invariant sets
* Structural stability, Hartman-Grobman Theorem, stable and unstable manifolds
* Centre manifold theorem, local bifurcations of equilibria and periodic orbits, Birkhoff normal form transformations for equilibria
* Example: the saddle-node-Hopf bifurcation (or other examples according to suggestions)
* Global bifurcations in two dimensions: derivation of the Poincaré map, leading on to Dynamical Systems II (maps). Discussion of the three-dimensional case and chaos
* Brief discussion of dynamics of dissipative PDEs (partial differential equations), pattern formation and the role of symmetry (probably will be omitted in 2011, but see the course on hydrodynamic stability theory, MAGIC014)
* Numerical and symbolic methods for ODEs and a mention of packages available. Continuation and the implicit function theorem


Alastair Rucklidge
Phone (0113) 3435161
Interests Pattern Formation, Nonlinear Dynamics, Astrophysical Fluid Dynamics
Photo of Alastair Rucklidge


Photo of Abeer AL-NAHDI
Photo of Michael Bennett
Michael Bennett
Photo of Gokcen Cekic
Gokcen Cekic
Photo of David Dowell
David Dowell
Photo of Sam Durston
Sam Durston
Photo of Matthew Edgington
Matthew Edgington
Photo of Mark Esson
Mark Esson
Photo of Meurig Gallagher
Meurig Gallagher
Photo of Mariano Galvagno
Mariano Galvagno
Photo of Kavita Gangal
Kavita Gangal
Photo of Esen hanac
Esen hanac
Photo of Aniayam  Okrinya
Aniayam Okrinya
Photo of Robert Pattinson
Robert Pattinson
Photo of Shaker Rasheed
Shaker Rasheed
Photo of Kenneth  Uda
Kenneth Uda


Elements of applied bifurcation theoryKuznetsov


Clicking on the link for a book will take you to the relevant Google Book Search page. You may be able to preview the book there. On the right hand side you will see links to places where you can buy the book. There is also link marked 'Find this book in a library'. This sometimes works well, but not always. (You will need to enter your location, but it will be saved after you do that for the first time.)


No assessment information is available yet.

Example Sheet 1

Files:Exam paper
Deadline: Monday 21 November 2011 (2133.7 days ago)

I'm entering this on the system with an extended due date, since I've just figured out how to use the system!

Example Sheet 2

Files:Exam paper
Deadline: Monday 12 December 2011 (2112.7 days ago)

Example Sheet 3

Files:Exam paper
Deadline: Monday 16 January 2012 (2077.7 days ago)


Files marked L are intended to be displayed on the main screen during lectures.


Recorded Lectures

Please log in to view lecture recordings.