The Heisenberg group in mathematics and physics (MAGIC076) 
GeneralDescription
The relations, which define the Heisenberg group or its Lie algebra,
are of a fundamental nature and appeared in very different areas. For
example, the basic operators of differentiation and multiplication by an
independent variable in analysis satisfy to the same commutation
relations as observables of momentum and coordinate in quantum
mechanics.
It is very easy to oversee those common structures. In his paper "On the role of the Heisenberg group in harmonic analysis", Roger Howe said: "An investigator might be able to get what he wanted out of a situation while overlooking the extra structure imposed by the Heisenberg group,
structure which might enable him to get much more."
In this course we will touch many (but not all!) occurrences of the
Heisenberg group, mainly from analysis and quantum mechanics. We will
see how to derive important results from the general properties the
Heisenberg group and its representations. We will discuss also some
crossfertilisation of different fields through their common
ingredientthe Heisenberg group.
The lectures will be given in a survey mode with many technicalities
to be omitted.
Semester
Spring 2012 (Monday, January 16 to Friday, March 23) Timetable
Lecturer
Students
PrerequisitesThe prerequisites include elementary group theory, linear algebra,
analysis and introductory Hilbert spaces. Some knowledge of Lie groups
and quantum mechanics would be an advantage however is not a strict
requirement.
Syllabus* Origins of the Heisenberg group and its Lie algebra in analysis and
physics; Heisenberg commutation relations; structure of the
Heisenberg groups, its automorphisms.
* Unitary representations of the Heisenberg group; orbit methods of
Kirillov.
* Stonevon Neumann theorem; Schroedinger and FockSegalBargmann
representations: their equivalence and intertwining operator
(Bargmann integral transform).
* Fourier inversion theorem, Schwartz space and Plancherel theorem.
* Metaplectic/oscillatory/ShaleWeyl representations; Bochner formula
and Huygens' principle.
* Calculus of pseudodifferential operators and quantisation; analysis
in the phase space and the Moyal bracket.
* Timefrequencies analysis and wavelets.
* De DonderWeyl formalism and quantum field theory.
BibliographyNote: Clicking on the link for a book will take you to the relevant Google Book Search page. You may be able to preview the book there. On the right hand side you will see links to places where you can buy the book. There is also link marked 'Find this book in a library'. This sometimes works well, but not always. (You will need to enter your location, but it will be saved after you do that for the first time.) AssessmentThe course will be accessed by an exam at its end. The lecture notes contain a large amount of exercises suitable for selfassessment during the semester. The final exam will be also based on those exercises in the essence.
AssignmentsThe Heisenberg Group in Mathematics and Physics
FilesFiles marked L are intended to be displayed on the main screen during lectures.
