Announcements


There are no announcements

Forum

General


Description

A (discrete time) dynamical system consists of a phase space X and a map T : X → X. Dynamical systems concerns studying what happens to points in X under iteration by T. (For notational purposes, write Tn(x) = T °…°T(x), the nth-fold composition of T.) The sequence of points x, T(x), T2(x), …, Tn(x), … is called the orbit of x. Some orbits may be periodic (Tn(x)=x for some n ≥ 1) whereas other orbits may be very complicated and could even be dense in X. Understanding the orbit of a given point x is generally a difficult problem (and is popularly called `chaos').
Ergodic theory takes a more qualitative approach: instead of studying the behaviour of all orbits, we are instead interested in the long-term behaviour of typical orbits. To make `typical' precise one needs to have a measure-theoretic structure on the phase space X; thus ergodic theory can also be viewed as study of dynamical systems in the presence of a measure μ. A basic result of the course is Birkhoff's Ergodic Theorem. Suppose f : X → R is a function. Consider the quantity

lim
n→∞ 
1

n
n−1

j=0 
f(Tj(x)),
which is an average value of f evaluated along the orbit of x. If one regards iteration of T as the passage of time then this quantity can be thought of as a `temporal' average of f along of the orbit of x. Birkhoff's Ergodic Theorem says that for typical points (μ-almost every) x, this temporal average of f is equal to ∫f dμ, a `spatial' average of f.
Ergodic theory has many applications to other areas of mathematics. We will see many connections to problems in metric number theory. For example, we shall use Birkhoff's Ergodic Theorem to study frequencies of digits appearing in number-theoretic expansions (decimals, continued fractions, etc) of real numbers and look at normal numbers.

Semester

Spring 2017 (Monday, January 23 to Friday, March 31)

Timetable

  • Mon 14:05 - 14:55

Prerequisites

A good knowledge of metric spaces (to undergraduate level) will be assumed (specifically: continuity, compactness). Familiarity with standard pure mathematics that is taught in UK undergraduate mathematics programmes will be assumed. A knowledge of measure theory will not be assumed and will be introduced in the lectures.

Syllabus

  • Lecture 1: Examples of dynamical systems
  • Lecture 2: Uniform distribution mod 1
  • Lecture 3: Invariant measures and measure-preserving transformations
  • Lecture 4: Ergodicity and mixing
  • Lecture 5: Recurrence. Birkhoff's Ergodic Theorem
  • Lecture 6: Topological dynamics
  • Lecture 7: Entropy, information, and the isomorphism problem
  • Lecture 8: Thermodynamic formalism
  • Lecture 9: Applications of thermodynamic formalism: (i) Bowen's formula for Hausdorff dimension, (ii) central limit theorems.
  • Lecture 10: The geodesic flow on compact surfaces of constant negative curvature

Lecturer


Charles Walkden
Email charles.walkden@manchester.ac.uk
Phone (0161) 2755805
vcard


Students


Photo of Ardavan Afshar
Ardavan Afshar
(*External)
Photo of Hassan Alkhayuon
Hassan Alkhayuon
(Exeter)
Photo of Marco Baffetti
Marco Baffetti
(Nottingham)
Photo of Robert Bickerton
Robert Bickerton
(Newcastle)
Photo of Jonathan Brooks
Jonathan Brooks
(Loughborough)
Photo of Douglas Coates
Douglas Coates
(Exeter)
Photo of Xiaoxuan Ding
Xiaoxuan Ding
(Loughborough)
Photo of Daniel Evans
Daniel Evans
(Liverpool)
Photo of Massimo Gisonni
Massimo Gisonni
(Loughborough)
Photo of Raffaele Grande
Raffaele Grande
(Cardiff)
Photo of Yan Luo
Yan Luo
(Loughborough)
Photo of Xiao Ma
Xiao Ma
(Loughborough)
Photo of Joel Mitchell
Joel Mitchell
(Birmingham)
Photo of Kathryn Spalding
Kathryn Spalding
(Loughborough)
Photo of Anna Szumowicz
Anna Szumowicz
(Durham)
Photo of Xinyue Zhang
Xinyue Zhang
(Loughborough)


Bibliography


No bibliography has been specified for this course.

Assessment



No assessment information is available yet.

No assignments have been set for this course.

Files


Files marked L are intended to be displayed on the main screen during lectures.

Week(s)File
1lecture01.pdf
1slides01.pdfL
2lecture02.pdf
2slides02.pdfL
3lecture03.pdf
3slides03.pdfL
4lecture04.pdf
4slides04.pdfL
5lecture05.pdf
5slides05.pdfL


Recorded Lectures


Please log in to view lecture recordings.