Course details
Semester
 Autumn 2020
 Monday, October 5th to Friday, December 11th
Hours
 Live lecture hours
 10
 Recorded lecture hours
 0
 Total advised study hours
 40
Timetable
 Thursdays
 12:05  12:55
Course forum
Visit the MAGIC081 forum
Description
We give an introduction to string theory with emphasis on its relation to twodimensional conformal field theories.
After motivating the relation between strings and conformal field theories using the Polyakov action, we develop the basic elements of twodimensional conformal field theories, and illustrate them using the special case of the theory of free bosons.
We use this example to explain the quantisation of strings in the conformal gauge and provide the spacetime interpretation of the physical string states.
Time permitting we will discuss the dimensional reduction of strings, Tduality, the relation between nonabelian gauge symmetries and KacMoody algebras, and orbifolds.
After motivating the relation between strings and conformal field theories using the Polyakov action, we develop the basic elements of twodimensional conformal field theories, and illustrate them using the special case of the theory of free bosons.
We use this example to explain the quantisation of strings in the conformal gauge and provide the spacetime interpretation of the physical string states.
Time permitting we will discuss the dimensional reduction of strings, Tduality, the relation between nonabelian gauge symmetries and KacMoody algebras, and orbifolds.
Prerequisites
A good working knowledge of quantum mechanics and special relativity is assumed.
Basic knowledge in quantum field theory, general relativity, group theory and differential geometry is helpful.
Basic knowledge in quantum field theory, general relativity, group theory and differential geometry is helpful.
Syllabus
 Action principles for relativistic particles.
 Action principles for relativistic strings. NambuGoto and Polyakov action. Conformal gauge and conformal invariance.
 Conformal invariance in two dimensions. Witt and Virasoro algebra. Twodimensional conformal field theories.
 Conformal field theory of free bosons and its relation to strings.
 Quantisation of strings using conformal field theory of free bosons. Spacetime interpretation of states. Momentum and angular momentum. Null states and gauge symmetries.
 Analysis of physical states. Examples of physical states: Tachyon, photon, antisymmetric tensor, graviton, dilaton. Elements of the representation theory of the Poincare group.
 Conformal field theories with extended symmetries, KacMoody algebras. Example: Conformal field theory of compact bosons.
 Compactification of strings on a circle. Spectrum, symmetry enhancement. Tduality.
 Orbifolds.
 Outlook
Lecturer

TM
Thomas Mohaupt
 University
 University of Liverpool
Bibliography
Follow the link for a book to take you to the relevant Google Book Search page
You may be able to preview the book there and see links to places where you can buy the book. There is also link marked 'Find this book in a library'  this sometimes works well, but not always  you will need to enter your location, but it will be saved after you do that for the first time.
 Introduction to Conformal Field Theory: With Applications to String Theory (Blumenhagen and Plauschinn, book)
 A first course in string theory (B. Zwiebach, book)
 Basic Concepts of String Theory (Ralph Blumenhagen, Dieter Lüst and Stefan Theisen, book)
 DBranes (Clifford V. Johnson, book)
 String Theory and MTheory (Katrin Becker, Melanie Becker and John H. Schwarz, book)
 String Theory: Volume 1, An Introduction to the Bosonic String (Joseph Polchinski, book)
 Superstring Theory (Michael B. Green, John H. Schwarz and E. Witten, book)
Assessment
Description
Open book exam during the standard Magic semester 1 assessment period. 4 questions, worth a total of 100 marks. Each individual question is worth at least 20 and at most 30 marks. Pass mark is 50 marks.
Assessment not available
Assessments are only visible to those being assessed for the course.
Files
Files marked Lecture are intended to be displayed on the main screen during lectures.
Lectures
Please log in to view lecture recordings.