MAGIC079: Inverse Problems

Course details

A core MAGIC course

Semester

Spring 2024
Monday, January 29th to Friday, March 22nd; Monday, April 22nd to Friday, May 3rd

Hours

Live lecture hours
10
Recorded lecture hours
0
Total advised study hours
40

Timetable

Thursdays
11:05 - 11:55

Course forum

Visit the MAGIC079 forum

Description

When it is possible to input the governing equation(s), shape(s) and size(s) of the domain(s), boundary and initial conditions, material properties of the media contained in the field, and forces or sources, then the analysis determining the unknown field is considered mathematically well-posed, i.e. the solution exists, is unique and it depends continuously on the data.

If any of these elements are unknown or unavailable, then the field problem becomes improperly defined (ill-posed) and is of an indirect (or inverse) type.

The course will give an introduction to Inverse Problems.

Various mathematical and numerical techniques for solving inverse problems will be described. 

Prerequisites

There is a background level of linear algebra, partial differential equations, numerical and functional analysis for which there are general courses.

Also just enough physics to understand the phenomena of heat conduction, fluid flow, acoustics, optics and electromagnetism used to formulate the forward problems. 

Syllabus

  • Basic linear inverse problems - enough linear algebra and functional analysis to understand ill-conditioning and regularization of inverse problems. 
  • Basic techniques for linear inverse problems - truncated singular value decomposition, Tikhonov's regularization, parameter choice methods, etc. 
  • PDE theory for inverse problems - enough to read the main existence, uniqueness and stability papers, e.g. Isakov's book. Some mathematical techniques and concepts, e.g. Schauder fixed point theorem, contraction principle, Fredholm alternative, etc. 
  • Numerical methods for inverse problems including FEM and BEM for forward problem solution and iterative regularization methods. Level set method. Constrained minimization gradient based methods. 

Lecturer

  • AP

    Dr Alberto Paganini

    University
    University of Leicester

Bibliography

No bibliography has been specified for this course.

Assessment

The assessment for this course will be released on Monday 13th May 2024 at 00:00 and is due in before Friday 24th May 2024 at 11:00.

Assessment for all MAGIC courses is via take-home exam which will be made available at the release date (the start of the exam period).

You will need to upload a PDF file with your own attempted solutions by the due date (the end of the exam period).

If you have kept up-to-date with the course, the expectation is it should take at most 3 hours’ work to attain the pass mark, which is 50%.

Please note that you are not registered for assessment on this course.

Files

Only consortium members have access to these files.

Please log in to view course materials.

Lectures

Please log in to view lecture recordings.