MAGIC081: String Theory

Course details

A specialist MAGIC course

Semester

Autumn 2024
Monday, October 7th to Friday, December 13th

Hours

Live lecture hours
10
Recorded lecture hours
0
Total advised study hours
40

Timetable

Thursdays
13:05 - 13:55 (UK)

Course forum

Visit the https://maths-magic.ac.uk/index.php/forums/magic081-string-theory

Description

We give an introduction to string theory with emphasis on its relation to two-dimensional conformal field theories.

After motivating the relation between strings and conformal field theories using the Polyakov action, we develop the basic elements of two-dimensional conformal field theories, and illustrate them using the special case of the theory of free bosons.

We use this example to explain the quantisation of strings in the conformal gauge and provide the space-time interpretation of the physical string states.

Time permitting we will discuss the dimensional reduction of strings, T-duality, the relation between non-abelian gauge symmetries and Kac-Moody algebras, and orbifolds. 

Prerequisites

A good working knowledge of quantum mechanics and special relativity is assumed.

Basic knowledge in quantum field theory, general relativity, group theory and differential geometry is helpful. 

Syllabus

  1. Action principles for relativistic particles.
  2. Action principles for relativistic strings. Nambu-Goto and Polyakov action. Conformal gauge and conformal invariance.
  3. Conformal invariance in two dimensions. Witt and Virasoro algebra. Two-dimensional conformal field theories.
  4. Conformal field theory of free bosons and its relation to strings.
  5. Quantisation of strings using conformal field theory of free bosons. Space-time interpretation of states. Momentum and angular momentum. Null states and gauge symmetries.
  6. Analysis of physical states. Examples of physical states: Tachyon, photon, antisymmetric tensor, graviton, dilaton. Elements of the representation theory of the Poincare group.
  7. Conformal field theories with extended symmetries, Kac-Moody algebras. Example: Conformal field theory of compact bosons.
  8. Compactification of strings on a circle. Spectrum, symmetry enhancement. T-duality.
  9. Orbifolds.
  10. Outlook 

Lecturer

  • Dr Thomas Mohaupt

    Dr Thomas Mohaupt

    University
    University of Liverpool

Bibliography

Follow the link for a book to take you to the relevant Google Book Search page

You may be able to preview the book there and see links to places where you can buy the book. There is also link marked 'Find this book in a library' - this sometimes works well, but not always - you will need to enter your location, but it will be saved after you do that for the first time.

Assessment

The assessment for this course will be released on Monday 13th January 2025 at 00:00 and is due in before Friday 24th January 2025 at 11:00.

Assessment for all MAGIC courses is via take-home exam which will be made available at the release date (the start of the exam period).

You will need to upload a PDF file with your own attempted solutions by the due date (the end of the exam period).

If you have kept up-to-date with the course, the expectation is it should take at most 3 hours’ work to attain the pass mark, which is 50%.

Please note that you are not registered for assessment on this course.

Files

Only current consortium members and subscribers have access to these files.

Please log in to view course materials.

Lectures

Please log in to view lecture recordings.