MAGIC108: Real and Complex Reflection Groups

Course details

A specialist MAGIC course

Semester

Autumn 2024
Monday, October 7th to Friday, December 13th

Hours

Live lecture hours
20
Recorded lecture hours
0
Total advised study hours
80

Timetable

Mondays
15:05 - 15:55 (UK)
Thursdays
11:05 - 11:55 (UK)

Course forum

Visit the https://maths-magic.ac.uk/index.php/forums/magic108-real-and-complex-reflection-groups

Description

The course will introduce real and complex finite reflection groups as well as some of the corresponding invariant theory. The main purpose will be to describe various parts of the classification of these groups.

In the real world, a reflection in Euclidean space is an orthogonal transformation that fixes every point of a codimension 1 subspace. Such subspaces are called hyperplanes. So just as we see in 2-dimensions, reflections in Euclidean space have order 2. The finite groups generated by such reflections were classified by Coxeter in the 1930s. Such groups appear in various branches of algebra and geometry. For example, they appear as Weyl groups in algebraic groups. 

The notion of a complex reflection came along later. These are transformations of a complex space that fix every vector of a hyperplane. They no longer have to have order 2. The finite groups generated by complex reflections were determined by Shephard and Todd in the 1950s. Remarkably they appear in normalizers of certain maximal tori in the finite groups of Lie type. 

Prerequisites

Required: Undergraduate Linear Algebra, Group Theory and Ring theory. 

Advantageous: Lie algebras, Representation Theory. 

Syllabus

  1.  Finite groups acting on inner product spaces.
  2.  Reflections and reflection groups.
  3.  Orthogonal decompositions of a reflection group.
  4.  Examples: $\Sym(n)$, $2\wr \Sym(n)$, $\Dih(2n)$, $B_n$, $G(p,m,n)$ something in %characteristic $p$.
  5.   Coxeter groups; real reflection groups.
  6.   Root systems.
  7.  The classification of root systems.
  8.  Classification of Coxeter groups.
  9.  Examples of indecomposable root systems.
  10.  Presentations of coxeter groups.
  11.   Complex reflection groups.
  12.   Invariants.

Lecturer

  • Professor Christopher Parker

    Professor Christopher Parker

    University
    University of Birmingham

Bibliography

No bibliography has been specified for this course.

Assessment

The assessment for this course will be released on Monday 13th January 2025 at 00:00 and is due in before Friday 24th January 2025 at 11:00.

Assessment for all MAGIC courses is via take-home exam which will be made available at the release date (the start of the exam period).

You will need to upload a PDF file with your own attempted solutions by the due date (the end of the exam period).

If you have kept up-to-date with the course, the expectation is it should take at most 3 hours’ work to attain the pass mark, which is 50%.

Please note that you are not registered for assessment on this course.

Files

Only current consortium members and subscribers have access to these files.

Please log in to view course materials.

Lectures

Please log in to view lecture recordings.